Cell Separation by Non-Inertial Force Fields in Microfluidic Systems.

نویسندگان

  • Hideaki Tsutsui
  • Chih-Ming Ho
چکیده

Cell and microparticle separation in microfluidic systems has recently gained significant attention in sample preparations for biological and chemical studies. Microfluidic separation is typically achieved by applying differential forces on the target particles to guide them into different paths. This paper reviews basic concepts and novel designs of such microfluidic separators with emphasis on the use of non-inertial force fields, including dielectrophoretic force, optical gradient force, magnetic force, and acoustic primary radiation force. Comparisons of separation performances with discussions on physiological effects and instrumentation issues toward point-of-care devices are provided as references for choosing appropriate separation methods for various applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fundamentals of inertial focusing in microchannels.

Inertial microfluidics has been attracting considerable interest in recent years due to immensely promising applications in cell biology. Despite the intense attention, the primary focus has been on development of inertial microfluidic devices with less emphasis paid to elucidation of the inertial focusing mechanics. The incomplete understanding, and sometimes confusing experimental results tha...

متن کامل

Microfluidic Device for Continuous Dielectrophoretic Separation of Cells in Division

This paper reports on a novel method for on-chip continuous separation of dividing and non-dividing cells based on differences in their dielectric properties. By means of two opposite dielectrophoretic force fields at multiple frequencies, the two populations of cells flowing through the microfluidic device are focused towards distinct equilibrium positions, which can be correlated to their cel...

متن کامل

High-throughput cell cycle synchronization using inertial forces in spiral microchannels.

Efficient synchronization and selection of cells at different stages of the cell replication cycle facilitates both fundamental research and development of cell cycle-targeted therapies. Current chemical-based synchronization methods are unfavorable as these can disrupt cell physiology and metabolism. Microfluidic systems developed for physical cell separation offer a potential alternative over...

متن کامل

Modulation of aspect ratio for complete separation in an inertial microfluidic channel.

Inertial microfluidics has been attracting considerable interest in recent years due to immensely promising applications in cell separations and sorting. Despite the intense attention, the moderate efficiencies and low purity of the reported devices have hindered their widespread acceptance. In this work, we report on a simple inertial microfluidic system with high efficiency (>99%) and purity ...

متن کامل

Modulation of aspect ratio for complete separation in an inertial microfluidic channel 3

Inertial microfluidics has been attracting considerable interest in recent years due to immensely promising applications in cell separations and sorting. Despite the intense attention, the moderate efficiencies and low purity of the reported devices have hindered their widespread acceptance. In this work, we report on a simple inertial microfluidic system with high efficiency (.99%) and purity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanics research communications

دوره 36 1  شماره 

صفحات  -

تاریخ انتشار 2009